MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

UG COURSES – AFFILIATED COLLEGES

B.Sc.Electronics

(Choice Based Credit System)

(with effect from the academic year 2017-2018 onwards)

Sem	Part I/II/ III/	Sub No	Subject status	Subject Title	Con- -tact Hrs/	L Hrs/ Week	T Hrs/ week	P Hrs/ week	C Credits
	IV/V				week				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Ι	Ι	1	Language	Tamil/Other Language	6	6	0	0	4
	II	2	Language	English	6	6	0	0	4
	III	3	Core	Basic Electronic Devices	5	3	2	0	4
	III	4	Major	Basic Electronic Devices					
			Practical - I	Lab	4	0	0	4	2
	III	5	Allied - I	Basic Electronics	3	3	0	0	3
	III	6	Allied Practical - I	Basic Electronics Lab	4	0	0	4	2
	IV	7	Common	Environmental studies	2	2	0	0	2
				Subtotal	30	20	2	8	21
II					·	•			
	Ι	8	Language	Tamil/Other Language	6	6	0	0	4
	II	9	Language	English	6	6	0	0	4
	III	10	Core	Digital Electronics	5	3	2	0	4
	III	11	Major Practical-II	Digital Electronics Lab	4	0	0	4	2
	III	12	Allied-II	Introduction to Digital Electronics	3	3	0	0	3
	III	13	Allied Practical-II	Digital Electronic Circuits Lab	4	0	0	4	2
	IV	14	Common	Value Based Education	2	2	0	0	2
				Subtotal	30	20	2	8	21

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester - I / Core-1

BASIC ELECTRONIC DEVICES

Objective: To learn about the various Electronic devices

UNIT I

Types of resistor – color code –Construction of various types of resistors (carbon composition.carbon film, wire-wound etc.) – power ratings- Capacitors (ceramic, mica polystrene,electrolytic etc.) – fixed and variable capacitors – Inductors,types.

UNIT II

Atomic structure Bohr atom model – energy levels -energy bands –important energy band in solids- classification of solids and energy bands – forbidden Energy gap – intrinsic and extrinsic semiconductors P type and N type semiconductors– majority and minority carriers

UNIT III

PN junction- Biasing a PN junction – forward and reverse biasing – PN junction diode: Characteristics -static and dynamic resistance - Diode Rectifiers: Half wave and Full wave rectifier – Bridge rectifier – clippers and clampers - Zener diode –Characteristics-voltage regulation using zener diode.

UNIT IV

Bipolar transistor – UJT – Common Base, Common Emitter & Common Collector configurations and their characteristics – load line – operating point – cut off and saturation regions – transistor biasing methods -Transistor as switch, Amplifier– SCR.

UNIT V

FET Constructional features-working Principle, features and characteristics – JFET and MOSFET and their characteristics – enhancement and depletion type – LED, LDR and photodiode.

(Total:60L)

TEXT BOOK:

1. V.K.Mehta, "Principles of Electronics", S.Chand & Co

2. B.L.Theraja, "Basic solid state Electronics", S.Chand & Co

LTPC 3204

(13L)

(12L)

(12L)

(11L)

(12L)

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester – I / Core Practical -1

BASIC ELECTRONIC DEVICES LAB

LTPC

- 1. Characteristics of PN Junction diode
- 2. Characteristics of Zener diode
- 3. Transistor Characteristics Common base
- 4. Transistor Characteristics Common emitter
- 5. Transistor Characteristics Common collector
- 6. Measurement of stability factor of self biasing method
- 7. Measurement of stability factor of fixed biasing method
- 8. FET Characteristics
- 9. Photoconductivity of LDR
- 10. Characteristics of Photo diode
- 11. Characteristics of SCR
- 12. Characteristics of Photo transistor.

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester – I / Allied - I Allied Electronics for other Major Students

BASIC ELECTRONICS

UNIT I

Semiconductor Basics: Introduction to semiconductor materials, intrinsic & extrinsic semiconductors. P type semiconductor,N type semiconductor p-n junction diode

UNIT II

Diode Circuits: clipper circuits, clamping circuits. Half wave rectifier, Center tapped and bridge full wave rectifiers, DC power supply: Block diagram of a power supply, Zener diode as voltage regulator.

UNIT III

The BJT: Basic transistor action, Transistor configurations: Common Base (CB), Common Emitter (CE) and Common Collector (CC) configuration, UJT: construction, working

UNIT IV

Feedback Amplifiers: Concept of feedback, negative and positive feedback, Positive feedback: Barkhausen criteria for oscillations, Study of Hartley, Colpitts oscillator and Crystal oscillator.

UNIT V

Junction Field Effect Transistor (JFET): Construction of JFET, Metal Oxide Field Effect Transistor (MOSFET): Basic Construction of MOSFET and working, enhancement and depletion modes.

TEXT BOOK:

Basic and Applied Electronics-T.K Bandyopadhyay, Books and Allied Pvt Ltd (2002)

BOOKS FOR REFERENCE:

- 1. V.K.Mehta, "Principles of Electronics", S.Chand & Co
- 2. B.L.Theraja, "Basic solid state Electronics", S.Chand &Co
- 3. R. L. Boylestad, L. Nashelsky, Electronic Devices and Circuit Theory, Pearson Education (2006).
- 4. N Bhargava, D C Kulshreshtha and S C Gupta, Basic Electronics and linear circuits, Tata McGraw-Hill (2007)
- 5. J. Millman and C. Halkias, Integrated Electronics, Tata McGraw Hill (2001).
- 6. David A. Bell, Electronic Devices & Circuits, Oxford University Press, Fifth edition
- 7. Mottershed, Electronic Devices, PHI Publication, 1st Edition.

LTPC 3003

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester – I / Allied Practical - I

Allied Practical for other major students

BASIC ELECTRONICS LAB

LTPC

- 1. Characteristics of PN diode
- 2. Characteristics of Zener diode
- 3. Transistor Characteristics Common base
- 4. Transistor Characteristics Common emitter
- 5. Transistor Characteristics Common collector
- 6. Measurement of stability factor of self biasing method
- 7. Measurement of stability factor of fixed biasing method
- 8. FET Characteristics
- 9. Photoconductivity of LDR
- 10. Characteristics of Photo diode
- 11. Characteristics of SCR
- 12. Characteristics of Photo transistor

DIGITAL ELECTRONICS

UNIT I

Number System and Codes: Decimal, Binary, Octal and Hexadecimal number systems, base conversions. Representation of signed and unsigned numbers, BCD code. Binary, octal and hexadecimal-,BCD-Excess3,graycode-Alphanumeric codes.

UNIT II

Digital Logic families: Fan-in, Fan out, Noise Margin, Power Dissipation, Figure of merit, Speed power product, comparison of TTL and CMOS families.

Truth Tables of OR, AND, NOT, NOR, NAND, EXOR, , Universal Gates, Basic postulates and fundamental theorems of Boolean algebra. Demorgan's Theorem. Karnaugh Maps: Two variable K-Map

UNIT III

Arithmetic Circuits: Binary Addition. Half and Full Adder. Half and Full Subtractor, Binary Adder/Subtractor. Multiplexers, De-multiplexers, Decoders, Encoders. Parity checker – parity generators – code converters - Magnitude Comparator.

UNIT IV

Latches, Flip-flops - SR, JK, D, T, and Master-Slave -Edge triggering – Level Triggering Asynchronous Ripple or serial counter – Asynchronous Up/Down counter - Synchronous counters – Synchronous Up/Down counters – Programmable counters – Modulo–n counter, Registers – shift registers - Universal shift registers – Shift register counters – Ring counter – Shift counters - Sequence generators.

UNIT V

Memory Devices Classification of memories – ROM - ROM organization - PROM – EPROM – EPROM – EAPROM, RAM – RAM organization – Static RAM Cell- Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA).

BOOKS FOR REFERENCE:

- 1. Digital Principles & Applications Albert Paul Malvino & Leach
- 2. Digital Fundamentals Thomas L. Floyd Prentice Hall
- 3. Digital Electronics-an introduction to Theory and Practice William H.Gothmann Prentice Hall
- 4. Digital Practice using Integrated Circuits R. P. Jain and Anand
- 5. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- 6. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 7. Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning.
- 8. Digital Principles, R. L. Tokheim, Schaum's Outline Series, Tata McGraw-Hill (1994)

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester – II / Core Practical - 2

DIGITAL ELECTRONICS LAB

LTPC

- 1. Study of AND, OR, NOT, NAND, NOR and XOR gates using IC
- 2. Designing of all the logic gates using NAND gate IC
- 3. Designing of all the logic gates using NOR gate IC
- 4. Verification of Demorgan's theorems
- 5. Construction of gates using discrete components
- 6. Code conversion
- 7. Half adder and Full adder
- 8. Half subtractor and Full subtractor
- 9. Multiplexer and De-Multiplexer
- 10. Encoder and Decoder
- 11. Study of Flip flops
- 12. Shift register
- 13. Ripple counter

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester - II / Allied - 2

Allied Electronics for other Major Students

INTRODUCTION TO DIGITAL ELECTRONICS

UNIT I

LTPC 3003

Number System and Codes: Decimal, Binary, Octal and Hexadecimal number systems, base conversions. BCD code. Binary, octal and hexadecimal arithmetic.

UNIT II

Digital Logic families, Truth Tables of OR, AND, NOT, NOR, NAND, EXOR, gates, Universal Gates, Basic postulates and fundamental theorems of Boolean algebra. Demorgan's Theorem.

UNIT III

Arithmetic Circuits: Binary Addition. Half and Full Adder. Half and Full Subtractor, Multiplexers, De-multiplexers, Decoders, Encoders. Parity checker– code converters

UNIT IV

Latches and Flip flops , S-R Flip flop, J-K Flip flop, T and D type Flip flops,

Counters (synchronous and asynchronous, ring and modulo- n counter Registers – shift registers. UNIT V

Memory Devices Classification of memories – ROM PROM – EPROM – EEPROM – EAPROM, RAM – Static RAM Cell- Bipolar RAM cell – MOSFET RAM cell – Dynamic RAM cell Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA)

BOOKS FOR REFERENCE:

- 1. Digital Principles & Applications Albert Paul Malvino & Leach
- 2. Digital Fundamentals Thomas L. Floyd Prentice Hall
- 3. Digital Electronics-an introduction to Theory and Practice William H.Gothmann Prentice Hall
- 4. Digital Practice using Integrated Circuits R. P. Jain and Anand
- 5. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- 6. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 7. Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning.
- 8. Digital Principles, R. L. Tokheim, Schaum's Outline Series, Tata McGraw-Hill, (1994)

MSU/ 2017-18 / UG-Colleges /Part-III (B.Sc. Electronics) / Semester – II / Allied Practical - 2

Allied Practical for other Major Students

DIGITAL ELECTRONIC CIRCUITS LAB

LTPC

- 1. Study of AND, OR, NOT, NAND, NOR and XOR gates using IC
- 2. Designing of all the logic gates using NAND gate IC
- 3. Designing of all the logic gates using NOR gate IC
- 4. Verification of Demorgan's theorems
- 5. Construction of gates using discrete components
- 6. Code conversion
- 7. Half adder and Full adder
- 8. Half subtractor and Full subtractor
- 9. Multiplexer and De-Multiplexer
- 10. Encoder and Decoder
- 11. Study of Flip flops
- 12. Shift register
- 13. Ripple counter